Excel Spreadsheet Processing
Output Requirements
All Excel Files
Zero Formula Errors
- Every Excel model must be delivered with zero formula errors (#REF!, #DIV/0!, #VALUE!, #N/A, #NAME?)
Preserve Existing Templates (When Updating)
- When modifying files, research and exactly match existing formatting, styles, and conventions
- Never impose standardized formatting on files with established patterns
- Existing template conventions always take precedence over these guidelines
Financial Models
Color Coding Standards
Unless otherwise specified by the user or existing template
Industry-Standard Color Conventions
- Blue text (RGB: 0,0,255): Hardcoded inputs and numbers users will change for scenario analysis
- Black text (RGB: 0,0,0): All formulas and calculations
- Green text (RGB: 0,128,0): Links pulling from other sheets within the same workbook
- Red text (RGB: 255,0,0): External links to other files
- Yellow background (RGB: 255,255,0): Key assumptions requiring attention or cells that need updating
Number Format Standards
Required Format Rules
- Years: Format as text strings (e.g., "2024" not "2,024")
- Currency: Use $#,##0 format; always specify units in headers ("Revenue ($mm)")
- Zero values: Display all zeros as "-" using number formatting, including percentages (e.g., "$#,##0;($#,##0);-")
- Percentages: Use 0.0% format by default (one decimal place)
- Multiples: Use 0.0x format for valuation multiples (EV/EBITDA, P/E)
- Negative numbers: Use parentheses (123) not minus sign -123
Formula Construction Rules
Assumption Placement
- Place all assumptions (growth rates, margins, multiples, etc.) in separate assumption cells
- Use cell references in formulas instead of hardcoded values
- Example: Use =B5*(1+$B$6) not =B5*1.05
Formula Error Prevention
- Validate all cell references are correct
- Check for off-by-one errors in ranges
- Ensure formulas are consistent across all forecast periods
- Test with edge cases (zero values, negative numbers)
- Verify no unintended circular references
Documentation for Hardcoded Values
- Add comments or callouts next to cells (e.g., at the end of the table). Format: "Source: [System/Document], [Date], [Specific Reference], [URL (if applicable)]"
- Examples:
- "Source: Company 10-K, FY2024, p.45, Revenue Note, [SEC EDGAR URL]"
- "Source: Bloomberg Terminal, 8/15/2025, AAPL US Equity"
- "Source: FactSet, 8/20/2025, Consensus Estimate Screen"
XLSX Creation, Editing, and Analysis
Overview
Create, edit, or analyze .xlsx files. Different tools and workflows apply to different tasks.
Important Requirements
Formula recalculation requires LibreOffice: Assume LibreOffice is installed; use the recalc.py script to recalculate formula values. The script automatically configures LibreOffice on first run.
Reading and Analyzing Data
Data Analysis with pandas
Use pandas for data analysis, visualization, and basic operations -- it provides powerful data manipulation capabilities:
import pandas as pd
# Read Excel
df = pd.read_excel('file.xlsx') # Default: first sheet
all_sheets = pd.read_excel('file.xlsx', sheet_name=None) # All sheets as dict
# Analysis
df.head() # Preview data
df.info() # Column information
df.describe() # Statistics
# Write Excel
df.to_excel('output.xlsx', index=False)
Excel File Workflows
Key: Use Formulas, Not Hardcoded Values
Always use Excel formulas instead of calculating values in Python and hardcoding them. This ensures the spreadsheet remains dynamic and updatable.
Wrong -- Hardcoded Calculated Values
# Wrong: Calculate in Python and hardcode the result
total = df['Sales'].sum()
sheet['B10'] = total # Hardcoded 5000
# Wrong: Calculate growth rate in Python
growth = (df.iloc[-1]['Revenue'] - df.iloc[0]['Revenue']) / df.iloc[0]['Revenue']
sheet['C5'] = growth # Hardcoded 0.15
# Wrong: Calculate average in Python
avg = sum(values) / len(values)
sheet['D20'] = avg # Hardcoded 42.5
Correct -- Use Excel Formulas
# Correct: Let Excel calculate the sum
sheet['B10'] = '=SUM(B2:B9)'
# Correct: Growth rate as Excel formula
sheet['C5'] = '=(C4-C2)/C2'
# Correct: Average using Excel function
sheet['D20'] = '=AVERAGE(D2:D19)'
This applies to all calculations -- sums, percentages, ratios, differences, etc. The spreadsheet should be able to recalculate when source data changes.
General Workflow
- Choose tool: pandas for data analysis, openpyxl for formulas/formatting
- Create/Load: Create a new workbook or load an existing file
- Modify: Add/edit data, formulas, and formatting
- Save: Write to file
- Recalculate formulas (required when using formulas): Use the recalc.py script
python recalc.py output.xlsx - Verify and fix any errors:
- The script returns JSON with error details
- If
statusiserrors_found, checkerror_summaryfor specific error types and locations - Fix identified errors and recalculate again
- Common errors to fix:
#REF!: Invalid cell references#DIV/0!: Division by zero#VALUE!: Wrong data types in formulas#NAME?: Unrecognized formula names
Create New Excel File
# Create with formulas and formatting using openpyxl
from openpyxl import Workbook
from openpyxl.styles import Font, PatternFill, Alignment
wb = Workbook()
sheet = wb.active
# Add data
sheet['A1'] = 'Hello'
sheet['B1'] = 'World'
sheet.append(['Row', 'Data', 'Example'])
# Add formula
sheet['B2'] = '=SUM(A1:A10)'
# Formatting
sheet['A1'].font = Font(bold=True, color='FF0000')
sheet['A1'].fill = PatternFill('solid', start_color='FFFF00')
sheet['A1'].alignment = Alignment(horizontal='center')
# Column width
sheet.column_dimensions['A'].width = 20
wb.save('output.xlsx')
Edit Existing Excel File
# Use openpyxl to preserve formulas and formatting
from openpyxl import load_workbook
# Load existing file
wb = load_workbook('existing.xlsx')
sheet = wb.active # Or wb['SheetName'] for specific sheet
# Work with multiple sheets
for sheet_name in wb.sheetnames:
sheet = wb[sheet_name]
print(f"Sheet: {sheet_name}")
# Modify cells
sheet['A1'] = 'New Value'
sheet.insert_rows(2) # Insert row at position 2
sheet.delete_cols(3) # Delete column 3
# Add new sheet
new_sheet = wb.create_sheet('NewSheet')
new_sheet['A1'] = 'Data'
wb.save('modified.xlsx')
Formula Recalculation
Excel files created or modified by openpyxl contain formulas as strings but no calculated values. Use the provided recalc.py script to recalculate formulas:
python recalc.py <excel_file> [timeout_seconds]
Example:
python recalc.py output.xlsx 30
Script features:
- Automatically sets up LibreOffice macros on first run
- Recalculates all formulas across all worksheets
- Scans all cells for Excel errors (#REF!, #DIV/0!, etc.)
- Returns JSON with detailed error locations and counts
- Works on both Linux and macOS
Formula Validation Checklist
Quick checks to ensure formulas work correctly:
Basic Validation
- Test 2-3 sample references: Verify they pull correct values before building the full model
- Column mapping: Confirm Excel columns match (e.g., column 64 = BL, not BK)
- Row offset: Remember Excel rows are 1-indexed (DataFrame row 5 = Excel row 6)
Common Pitfalls
- NaN handling: Use
pd.notna()to check for empty values - Rightmost columns: FY data is often in column 50+
- Multiple matches: Search for all occurrences, not just the first
- Division by zero: Check denominator before using
/in formulas (#DIV/0!) - Bad references: Verify all cell references point to intended cells (#REF!)
- Cross-sheet references: Use correct format (Sheet1!A1) when linking sheets
Formula Testing Strategy
- Start small: Test formulas on 2-3 cells before applying broadly
- Verify dependencies: Check all cells referenced by formulas exist
- Test edge cases: Include zero values, negative numbers, and very large values
Interpreting recalc.py Output
The script returns JSON with error details:
{
"status": "success", // or "errors_found"
"total_errors": 0, // total error count
"total_formulas": 42, // number of formulas in file
"error_summary": { // only present when errors found
"#REF!": {
"count": 2,
"locations": ["Sheet1!B5", "Sheet1!C10"]
}
}
}
Best Practices
Library Selection
- pandas: Best for data analysis, bulk operations, and simple data export
- openpyxl: Best for complex formatting, formulas, and Excel-specific features
Using openpyxl
- Cell indexing starts at 1 (row=1, column=1 refers to cell A1)
- Use
data_only=Trueto read calculated values:load_workbook('file.xlsx', data_only=True) - Warning: If opened with
data_only=Trueand saved, formulas are replaced with values and permanently lost - Large files: Use
read_only=Truefor reading,write_only=Truefor writing - Formulas are preserved but not evaluated -- use recalc.py to update values
Using pandas
- Specify dtypes to avoid inference issues:
pd.read_excel('file.xlsx', dtype={'id': str}) - Read specific columns for large files:
pd.read_excel('file.xlsx', usecols=['A', 'C', 'E']) - Handle dates properly:
pd.read_excel('file.xlsx', parse_dates=['date_column'])
Code Style Guide
Important: When generating Python code for Excel operations:
- Write minimal, concise Python code without unnecessary comments
- Avoid verbose variable names and redundant operations
- Avoid unnecessary print statements
For Excel files themselves:
- Add comments to cells with complex formulas or important assumptions
- Document data sources for hardcoded values
- Add notes to key calculations and model sections